67,232 research outputs found

    Evolution of Cooperation in Public Goods Games with Stochastic Opting-Out

    Full text link
    This paper investigates the evolution of strategic play where players drawn from a finite well-mixed population are offered the opportunity to play in a public goods game. All players accept the offer. However, due to the possibility of unforeseen circumstances, each player has a fixed probability of being unable to participate in the game, unlike similar models which assume voluntary participation. We first study how prescribed stochastic opting-out affects cooperation in finite populations. Moreover, in the model, cooperation is favored by natural selection over both neutral drift and defection if return on investment exceeds a threshold value defined solely by the population size, game size, and a player's probability of opting-out. Ultimately, increasing the probability that each player is unable to fulfill her promise of participating in the public goods game facilitates natural selection of cooperators. We also use adaptive dynamics to study the coevolution of cooperation and opting-out behavior. However, given rare mutations minutely different from the original population, an analysis based on adaptive dynamics suggests that the over time the population will tend towards complete defection and non-participation, and subsequently, from there, participating cooperators will stand a chance to emerge by neutral drift. Nevertheless, increasing the probability of non-participation decreases the rate at which the population tends towards defection when participating. Our work sheds light on understanding how stochastic opting-out emerges in the first place and its role in the evolution of cooperation.Comment: 30 pages, 4 figures. This is one of the student project papers arsing from the Mathematics REU program at Dartmouth 2017 Summer. See https://math.dartmouth.edu/~reu/ for more info. Comments are always welcom

    The Beylkin-Cramer Summation Rule and A New Fast Algorithm of Cosmic Statistics for Large Data Sets

    Full text link
    Based on the Beylkin-Cramer summation rule, we introduce a new fast algorithm that enable us to explore the high order statistics efficiently in large data sets. Central to this technique is to make decomposition both of fields and operators within the framework of multi-resolution analysis (MRA), and realize theirs discrete representations. Accordingly, a homogenous point process could be equivalently described by a operation of a Toeplitz matrix on a vector, which is accomplished by making use of fast Fourier transformation. The algorithm could be applied widely in the cosmic statistics to tackle large data sets. Especially, we demonstrate this novel technique using the spherical, cubic and cylinder counts in cells respectively. The numerical test shows that the algorithm produces an excellent agreement with the expected results. Moreover, the algorithm introduces naturally a sharp-filter, which is capable of suppressing shot noise in weak signals. In the numerical procedures, the algorithm is somewhat similar to particle-mesh (PM) methods in N-body simulations. As scaled with O(NlogN)O(N\log N), it is significantly faster than the current particle-based methods, and its computational cost does not relies on shape or size of sampling cells. In addition, based on this technique, we propose further a simple fast scheme to compute the second statistics for cosmic density fields and justify it using simulation samples. Hopefully, the technique developed here allows us to make a comprehensive study of non-Guassianity of the cosmic fields in high precision cosmology. A specific implementation of the algorithm is publicly available upon request to the author.Comment: 27 pages, 9 figures included. revised version, changes include (a) adding a new fast algorithm for 2nd statistics (b) more numerical tests including counts in asymmetric cells, the two-point correlation functions and 2nd variances (c) more discussions on technic

    Analysis of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow and its Fully Discrete Finite Element Approximation

    Full text link
    In this paper we present PDE and finite element analyses for a system of partial differential equations (PDEs) consisting of the Darcy equation and the Cahn-Hilliard equation, which arises as a diffuse interface model for the two phase Hele-Shaw flow. We propose a fully discrete implicit finite element method for approximating the PDE system, which consists of the implicit Euler method combined with a convex splitting energy strategy for the temporal discretization, the standard finite element discretization for the pressure and a split (or mixed) finite element discretization for the fourth order Cahn-Hilliard equation. It is shown that the proposed numerical method satisfies a mass conservation law in addition to a discrete energy law that mimics the basic energy law for the Darcy-Cahn-Hilliard phase field model and holds uniformly in the phase field parameter ϵ\epsilon. With help of the discrete energy law, we first prove that the fully discrete finite method is unconditionally energy stable and uniquely solvable at each time step. We then show that, using the compactness method, the finite element solution has an accumulation point that is a weak solution of the PDE system. As a result, the convergence result also provides a constructive proof of the existence of global-in-time weak solutions to the Darcy-Cahn-Hilliard phase field model in both two and three dimensions. Finally, we propose a nonlinear multigrid iterative algorithm to solve the finite element equations at each time step. Numerical experiments based on the overall solution method of combining the proposed finite element discretization and the nonlinear multigrid solver are presented to validate the theoretical results and to show the effectiveness of the proposed fully discrete finite element method for approximating the Darcy-Cahn-Hilliard phase field model.Comment: 30 pages, 4 tables, 2 figure

    Gas Damping Coefficient Research for MEMS Comb Linear Vibration Gyroscope

    Get PDF
    Silicon-MEMS gyroscope is an important part of MEMS (Micro Electrical Mechanical System). There are some disturb ignored in traditional gyroscope that must be evaluated newly because of its smaller size (reach the level of micron). In these disturb, the air pressure largely influences the performance of MEMS gyroscope. Different air pressure causes different gas damping coefficient for the MEMS comb linear vibration gyroscope and different gas damping coefficient influences the quality factor of the gyroscope directive. The quality factor influences the dynamic working bandwidth of the MEMS comb linear vibration gyroscope, so it is influences the output characteristic of the MEMS comb linear vibration gyroscope. The paper shows the relationship between the air pressure and the output amplified and phase of the detecting axis through analyzing the air pressure influence on the MEMS comb linear vibration gyroscope. It discusses the influence on the frequency distribute and quality factor of the MEMS comb linear vibration gyroscope for different air pressure.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Baryon electric dipole moments from strong CP violation

    Get PDF
    The electric dipole form factors and moments of the ground state baryons are calculated in chiral perturbation theory at next-to-leading order. We show that the baryon electric dipole form factors at this order depend only on two combinations of low-energy constants. We also derive various relations that are free of unknown low-energy constants. We use recent lattice QCD data to calculate all baryon EDMs. In particular, we find d_n = -2.9\pm 0.9 and d_p = 1.1\pm 1.1 in units of 10^{-16} e \theta_0 cm. Finite volume corrections to the moments are also worked out. We show that for a precision extraction from lattice QCD data, the next-to-leading order terms have to be accounted for.Comment: 30 pages, 8 figures, to appear in JHE
    corecore